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Abstract-Effects of pulsatile flow upon heat transfer characteristics are studied for fully developed, laminar, 
and pulsating flow in curved tubes. The heat transfer boundary conditions are taken to be axially uniform 
heat flux with peripherally uniform wall temperature. Temperature distribution, and local and peripherally 
averaged Nusselt numbers are calculated for different values of frequency and amplitude ratio parameters, 
Reynolds number, curvature ratio, Dean and Prandtl numbers. The result shows that there is considerable 
variation in local and peripherally averaged Nusselt number. The time and space averaged Nusselt number 
approaches the corresponding steady state flow case at frequency parameter G( = 6 and decreases as a 

decreases. A further decrease is associated with increasing amplitude ratio at low frequencies. 
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NOMENCLATURE 

tube radius; 
Dean number = Re/JR, 

ratio of the maximum amplitude of the 
oscillating pressure gradient to the 

steady component ; 
fluid thermal conductivity; 
dimensionless temperature ; 
local Nusselt number defined in terms of 
the time averaged mean temperature; 

peripherally averaged Nusselt number; 

time and space averaged Nusselt 
number; 
dimensionless pressure, = Pa2/pv2; 

Prandtl number ; 
Reynolds number based on tube radius 
and the average axial velocity resulting 

from the steady pressure gradient P,,; 

dimensionless tube radius of curvature, 
= Rb/a; 

dimensionless toroidal radius, = RI/a; 

dimensionless radial coordinate in tube, 
= /la; 

temperature, fraction of a cycle; 
time, = cot’; 
dimensionless axial velocity component, 
= aW’/v. 

Greek symbols 

cr, frequency parameter, a Jw/v ; 
w, frequency of pulsation ; 
4 angular coordinate in plane of tube 

curvature ; 
P? dynamic viscosity ; 
V, kinematic viscosity; 

5, dimensionless axial vorticity 
component ; 

P> density; 

angular coordinate of tube cross- 

section ; 
dimensionless secondary stream 
function ; 
change in $ between adjacent secondary 

stream lines; 

change in n between adjacent 
isotherms; 
denotes dimensional variable. 

Subscripts 

1, local ; 
W, at the wall ; 
St, steady component. 

INTRODUCTION 

ALTHOUGH pulsating flow in curved tubes occurs 
frequently in both natural phenomena and engineering 
systems, very little related work is available in the 
literature, and consequently the problem is not com- 
pletely understood. 

It was only quite recently that Lyne [l] initiated the 

analysis of unsteady pulsatile flows in curved tubes, 
The motion induced in a circular tube by a sinusoidally 
time-varying pressure gradient with zero mean is 
assessed. He predicts additional secondary circulation 
of opposite direction to that of steady flow in the 
inviscid core and postulates that this additional secon- 
dary flow is due to shear action. 

Zalosh and Nelson [2] use the Finite Hankel 

Transform to obtain analytical solutions for a medium 
range of the frequency parameter 2. 

Chow and Li [3] employ the same technique used by 
Zalosh and Nelson, but their solution covers a wider 
range of tl. They find that the secondary flow patterns 
vary with respect to CL and can be divided into three 
distinct phases dictated by the relative importance of 
the viscous and inertia forces: (1) the shear force 
dominated flow with a single circulation, (2) the 
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transitional flow with either one or two circulations, 
and (3) the boundary layer flow with either one or two 
circulations, and (3) the boundary layer flow with two 
circulations. They confirm Lyne’s [1] prediction of the 
formation of an additional circulation in the inviscid 
core but they report that it is more likely to be due to 
inertia forces, rather than shear action as postulated by 
Lyne. 

Simon et ul. [4] use a perturbation analysis includ- 
ing the second-order solution for fluid and heat 
transfer. The results obtained cover a wide range of 
excitation parameters (a = 0.1-12, k = 0.01-3) and 
Prandtl number (Pr = l.O-100) but small Dean 
number (De < 22). Their results show that the increase 
in the time averaged Nusselt number are most evident 
at high Prandtl numbers, high excitation relative 
amplitudes, and low excitation frequencies. They re- 
port that the Nusselt number ratio (curved pulsatile to 
straight pulsatile) passes through a maximum value at 
low c(. This unusual result is negated by the more exact 
numerical solution results described in the body of the 
current paper. It can be inferred that the pertubation 
analysis, limited as it is to solutions of the second- 
order, is unable to describe fully the details of the 
secondary flow phenomena in pulsatile flow especially 
at low excitation frequency. 

Conflicting results have been reported for the pul- 
sating flow and heat transfer in straight tubes. In some 
cases the flow pulsations seem to enhance the heat 
transfer, whereas, in other cases either no significant 
effect is shown or a decrease occurs. 

The solutions for pure oscillatory and pulsatile flows 
available in the literature are mostly analytical and 
restricted to very low Dean numbers (< 22). 

The purpose of the present study is to magnify the 
secondary flow effect, by extending the Dean number 
range, and to show the outcome of the interaction 
between the Row pulsations and the secondary flow. 
The effect of this interaction on the heat transfer is 
discussed. The energy equation is solved using the 
velocity distribution results reported in an earlier 
paper by Rabadi et al. [5] and in full in a Ph.D. thesis 
[6]. The numerical techniques used are the same as 
those employed by Rabadi et al. [5]. 

inside the tube can be completely located by specifying 
the three orthogonal toroidal coordinates 0, 4 and r. 

The present analysis concerns pulsatile laminar flow 
and heat transfer in curved tubes. The following 
assumptions are made : 

(1) the fluid behaves like an incompressible, viscous 
Newtonian fluid with constant properties; 

(2) both the laminar flow and the temperature fields 
are fully developed ; 

(3) the effects of free convection and viscous dissi- 
pation are negligible ; 

(4) axial conduction is negligible relative to radial 
conduction ; 

(5) the coil pitch effect is negligible. 
The effects of free convection have been studied by 

Singh and Bell [7] and Abul-Hamayel[8] experimen- 
tally, and Yao and Berger [9] analytically using 
perturbation methods. These studies show that the 
effects of free convection can be of significance at low 
Reynolds number. Thus, the present study is limited to 
small Grashof numbers when the Reynolds number is 
small. 

The dimensionless equations (l-3) governing the 
flow are [Kalb [1973)] : 

axial velocity, W, equation : 

a2 dw 2 

at 
+*w+B~+CqJ+$ 

adJ 
I a2w i ap 
r2 a42 =Rd8 (1 +kcost), 

axial vorticity, 5, equation : 

where [ is defined as 

The coefficients, A, A,, B and C are functions of the 
space variables r, R and 4, and first-order stream 
function derivatives. D, is a function of the space 
variables as well as the axial velocity W and its 
derivatives. 

FORMULATION OF THE PROBLEM 

Consider a circular tube of radius a coiled in a circle 
of radius R, about the axis OZ as shown in Fig. 1. The 
curved tube could be thought of as a part of a helical 
tube with zero pitch. The system of coordinates shown 
in Fig. 1 is a ioroidal coordinate system. Any point 

FIG. 1. System of toroidal coordinates for a circular tube. 

D ____ 

a is referred to as ‘the frequency parameter.’ Other 
researchers refer to a as the oscillatory Reynolds 
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number. In fact, x2 is the ratio of the characteristic 
diffusion time, a’/v to the characteristic oscillatory 
time, l/w. 

The axial pressure gradient, which is the only 
pressure term that explicitly appears in the final 
equations is expressed as follows: 

(1 + k cos t). 

This assumes that the driving force is a sinusoidally 
time varying axial pressure gradient imposed on a 
steady component (aP/aO),,. The ratio of the 
maximum amplitude of time varying component to the 
steady component is k. 

The heat transfer boundary condition chosen in this 
work assumes that the wall temperature T, varies 
linearly in the axial direction but is uniform per- 
ipherally and constant with time. 

A non-dimensional temperature n is defined in the 
following form : 

n - tTw - 7-1 R 

a(a7-jae) 0 

where aT/aO is constant for a thermally fully de- 
veloped flow. 

The dimensionless energy equation is [lo] : 

,an dn 
- Pm at + BTG + A, 

an a2n ia*n WR, 
xr+s+r’@= R 

where 

1 sin C$ 

Ar=-+R 
+prlcl 

r rRd4’ 

cos 4 Pr a* 
B,=------- rR rR dr’ 

and Pr is the Prandtl number, p&/K. 

Boundary conditions 
Figure 2 illustrates the boundary conditions. Four 

regions are identified separately: (1) tube wall where 
W = 1/1 = n = 0, 5 = - R-‘(a*tj/fF), (2) left 
horizontal radius where II/ = 5 = 0, aW/l+ = an/&$ 
= 0, (3) right horizontal radius where $ = 5 = 0, 
a$/&$ = an/a4 = 0, and (4) center point where II/ = 5 
= 0, awlar = an/ar = 0. 

RESULTS AND DISCUSSION 

As defined before, the dimensionless temperature 
represents the difference between the tube wall and the 
fluid temperature. The temperature profiles are shown 
for the upper half of the tube cross-section, in the form 
of contours. A fixed number of contours (10) is 
adopted in all the plots. This means that different 
values of An (the difference in dimensionless tempera- 
ture between neighboring contour lines) are adopted 
for each plot. Therefore, the large spacing between the 

aw -0 
ar 

w -0 
ao 

e -0 ti -0 0 -0 

I =O t -0 f -0 

FIG. 2. Boundary conditions. 

contours represent areas of relatively flat temperature 
gradients, whereas places where the contour lines are 
close together represent steep temperature gradients. 
These temperature contour plots are very useful for 
visualizing the effects that various parameters have on 
the temperature field. Note that for either heating or 
cooling, the dimensionless temperature is zero at the 
wall. Extrema on these contour plots correspond to the 
highest and lowest fluid temperatures. The Q and 0 
signs are for positive and negative dimensionless 
temperatures, respectively. 

Each of these temperature contour plots represents 
the profiles at four different times during a cycle (T = 
0.25, 0.5, 0.75 and 1.0). These times are the same at 
which the axial velocity profiles, and the secondary 
flow stream lines are given. 

Figure 3 shows the variations of axial velocity at 
four times during a cycle for c( = 2,4 and 10, and k = 
1.5. The maximum velocity is moved towards the 
outside of the pipe, as in steady flow. The steep velocity 
gradient created in this region is instrumental in 
increasing the heat transfer as will be seen later. The 
higher the frequency the less the flow responds to the 
pulsating pressure. At low frequency (c( = 2.0) the 
response is a maximum, and a flow reversal actually 
occurs at T = 0.25. 

The secondary flows induced at corresponding 
times in the cycle are shown in Fig. 4. Further details of 
the flow are available in an earlier publication by 
Rabadi er al. [S]. The intensity of the secondary flow is 
revealed by the value of A$ (the change in the 
streamfunction between adjacent streamlines). The 
flow moves rapidly along the periphery from outside to 
inside, with a slower return along the pipe diameter 
which is an axis of symmetry for the upper and lower 
circulations. For the case illustrated in Fig. 4. the 
circulation is most intense at T = 0.75 and reduces by 
an order of magnitude during the cycle. At its strongest 
the return flow resembles ajet flowing from the outside 
(4 = n/2) around the periphery. 

The secondary flows have a profound and interest- 
ing effect on the temperature distributions. It is clear in 
Figs. 5 and 6 that for a high Prandtl number (Pr = 5), 
convection effects are dominant. The high tempera- 
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tures near the wall at the outside of the duct are carried 
across the pipe center line by the secondary flows. This 
creates two minimum tem~rature regions, one in each 
half of the pipe. The effect is greatly reduced for tl = 2, 
when 7’ = 0.25 and 0.5 (Fig. 6), as during this portion 
of the cycle the secondary flow has been greatly 
reduced (Figs. 3 and 4). In reading these figures the 
value of An should be observed as it represents the 
temperature change between adjacent isotherms. At cx 
= 10.0 (Fig. S), An changes little during a cycle. 
However at TV = 2.0 (Fig. 6), it changes considerably, 
reflecting the relative intensity of the secondary flow at 
different times during the cycle. 
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For very small Prandtl numbers (not shown) con- 
duction dominates and the isotherms tend towards 
concentric circles about the pipe center, greatly reduc- 
ing the effects of curvature. 

Figure 7 illustrates an intermediate Prandtl number 
(Pr = 0.7). In this case convection is sufficient to move 
the minimum towards the outside of the pipe, when the 
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FIG. 3. Axial velocity distributions on horizontal diameter for 
a = 2,4andlO,k = iS,Re = 1000,De = i~andfractionsof 

a cycle T = 0 (LO), 0.25, 0.5 and 0.75. 
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FIG. 4. Secondary flow streamlines for a = 2.0, k = 1.5, Re = 
1000, De = 100 and fractions of a cycle T = 0 (l.O), 0.25,0.5 

and 0.75. 
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secondary flow is not intense, but not sufficient to form 
the b&modal distribution discussed above. Again, 
when T = CL?5 and OS the patterns change eon- 
skierably because of the reduction of axial velocity and 
the associated secondary flows. At T = 0.25 a smail 
tem~rature m~imum occurs towards the inside of 
the pipe because of the Row reversal iri the axial 

direction. The steep temperature gradients, evident at 
the outside of the duct and the adjacent ~~pb~ra~ 
region in Figs. 5-7, give rise to enhanced Nusselt 
numbers in these regions. These rncreased values are 
partly offset by the decreased NusseIt numbers as- 
sociated with the reduced gradients seen at the inside 

DELTA+ 6,243 
ALPHA=28# 
RATIO= 1.50 

DELTAR~ 5.199 i-k= 100c9.00 
ALPHA= 2.00 De= 1OO.W 

;ATro= i .50 
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of the duct. Reduced gradients are particularly evident 
for c( = 2 at T = 0.25 and 0.5 (Figs. 3 and 7) as the 
pulsations reduce the intensity of the secondary flow. 
Ultimately, as shown below, this leads to a reduction in 
the time and space averaged values of the Nusselt 
number as compared with higher values of CC. 

DELTA n= 12.904 
ALPHA= 2.00 
RATIO= 1.50 

= 
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T 
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Re= 1000.00 
De= 100.00 

DELTA n= 1.001 Re= 1000.00 
ALPHA= 2.00 De= 100.00 
RATIO= 1.50 
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PR = 0.70 

FIG. 7. Isothermsfor a = 2.0, k = 1.5, Pr = 0.7,Re = 1000,De 
= 100 and fractions of a cycle T = 0 (l.O), 0.25,O.S and 0.75. 

Figures 8-10 illustrate the local distribution of 

Nusselt number, Nu,, around the periphery as well as 
- 

the peripherally averaged Nusselt number, Nu, as a 
function of time. An angle of 90” refers to the outside of 
the pipe and -90” to the inside. For c( = 10 and Pr = 

5, not only is the heat transfer convection dominated, 
but secondary flows vary little during the cycle. Nu, is 
highest at the outside of the pipe due to strong 
secondary flows revealing a boundary layer type of 
build-up, originating at that point. For tl = 2, Figs. 9 
and 10, Nu, varies widely during a cycle at the outside 
wall because of the diminution of the secondary flow 
for T = 0.25 and 0.5. Figures 8-10 also show a change 

- 
in the phasing of Nu in time. At low frequency, viscous 

forces predominate and the forcing function and the 
velocity response are in phase. At higher frequencies 
inertial forces predominate and the forcing function 
and velocity become 90” out of phase. This phased 

reaction is duplicated by Nu which responds with the 
velocity. Slight irregularities in the smoothness of the 
curves (see Figs. 9 and 10 for example) were checked by 
repeating the numerical analysis for smaller grid sizes 
and time steps. The irregularities were found to be 
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FIG. 8. Local Nusselt number Nu, as a function of angle 4 (Q 
= 90” at outside of horizontal diameter) and for T = 0 (l.O), 

0.25,0.5,0.75 and peripherally averaged Nusselt number G 
as a function of cycle fraction, for c( = 10.00, k = 1.5, Pr = 5.0, 

Re = 1000 and De = 100. 
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stable and hence were not the outcome of numerical important, hence higher a is needed to assure ther- 
procedures. mally frozen conditions. 

The Prandtl number always plays an important role 
when boundary layer phenomena are involved, and 
this is most evident in Figs. 11-13, which show the 
behavior of the time and peripherally averaged Nusselt - 
number Nu. At the Dean number shown (De = lOO), 
Pr = 0.5 and 0.005 give almost identical results. This 
implies that the heat transfer is conduction dominated ZZZ=ZZ 
with respect to the secondary flows. As a reduces, Nu 
reduces because of variations in axial velocity. This 
reduction is clearly more pronounced as k increases 
from 0.5 to 1.0 to 1.5. Convection, resulting from the = 
secondary flows, leads to a pronounced increase in NM 
as the Prandtl number increases. 

The results presented here do not show the same 
behavior as that predicted in an earlier paper by Simon 
et al. [4], for small values of a. It must be concluded 
that the perturbation analysis used there up to the 
second order, is simply not able to model accurately 
the complex secondary flows that occur at low a. 

CONCLUSIONS 

The Nusselt number results for the frozen con- 
ditions (high a), can be compared to the steady state 
solution available in the literature. Table 1 lists the 
value of the time averaged peripherally averaged 
Nusselt number at high frequency for the present work 
compared with the steady state results of Kalb [lo]. 
Excellent agreement is shown for low Prandtl number. 
For Pr = 5 the effect of secondary flow becomes more 

In Iaminar, pulsatile, curved tube flows, the Nusselt 
number varies widely both around the tube periphery 
and also during a cycle. These effects are greatest for 
large Prandtl numbers and small values of the fre- 
quency parameter a. The time and space averaged 
Nusselt number is large for large Prandtl numbers and 
falls at low values of a. This latter effect becomes more 
pronounced as the excitation amplitude increases. 
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TRANSFERT THERMIQUE DANS DES TUBES COURBES AVEC UN ECOULEMENT PULSE 

Rbm&--Qu Ctudie les effets d’un bcoulement pulse sur le transfert thermique pour un Ccoulement 
pleinement developpe, laminaire dans des tubes courbes. Les conditions aux limites thermiques sont un flux 
parietal constant axialement avec une temperature par&ale uniforme sur la peripherie. La distribution de 
temperature et les nombres de Nusselt locaux ou moyens sur la p&iphCrie sont calculls pour differentes 
valeurs de la frequence, du taux de pulsation, du nombre de Reynolds, du rapport de courbure, des nombres 
de Dean et de Prandtl. Les resultats montrent qu’il y a une variation considerable des nombres de Nusselt 
locaux ou moyens sur la peripherie. Le nombre de Nusselt moyennt dans le temps et I’espace approche le cas 
correspondant permanent lorsque le parametre de frequence est a = 6 et il decroit lorsque a diminue. Une 

diminution est associte a l’augmentation du taux de pulsation aux basses frequences. 

WARMETRANSPORT IN GEKRUMMTEN ROHREN BE1 PULSIERENDER STRGMUNG 

Zuaammenfassung-Es werden Einflilsse der pulsierenden Stromung auf die Wlrmetransport-Eigenschaf- 
ten bei voll ausgebildeter laminarer pulsierender Stromung in pkrtimmten Rohren untersucht. Als 
Randbedingung wird ein gleichmaDiger Wlirmestrom in der axialen Richtung mit konstanter Wandtempera- 
tur iiber den Umfang angenommen. Tem~raturverteiiung und sowohl lokale als such ilber den Umfang 
gemittelte Nus~lt-Z~len werden fur verschiedene Frequenz- und Amplituden-Verh~ltnis~, Reynolds- 
Zahlen, Kr~mmungsradien-Verh~ltnis~, Dean- und Prandtl-Zahlen ermittelt. Das Ergebnis zeigt einen 
betrlchtlichen Unterschied zwischen der lokalen und der iiber den Umfang gemittelten Nusselt-Zahl. Die 
zeitlich und riiumlich gemittelte Nusselt-Zahl niihert sich derjenigen der entsprechenden stationlren 
Striimung bei einem Frequenzparameter von a = 6 und fallt mit abnehmendem a. Eine weitere Abnahme ist 

mit einem steigenden Amplitudenverhiiltnis bei niedrigen Frequenzen verbunden. 

TEIIJIOIIEPEHOC B MCKPMBJIEHHbIX TPYBAX IIPM IIYJIbCMPYIOIIIEM TE9EHAH 

AHHoTaunH - RnHnHHe nynbCauHii Ha XapaKTepHCTAKH TeunOO6MeHa HccneityeTca nps nonnocrbio 
pa3BHTOM naMHHapHOM H HynbCHpymmeM TeYeHHH XHnKOCTW Ei HCKpHBneHHbIX rpy6ax. B KaHeCTBe 
rpaHHHHbIX yCnOBHfi rennoo6hzesa HpHHXTbl aKCHaRbH0 paBHOMepHblH TeHnOBOH IIOTOK H OnHOpOnHaa 
TeMnepaTypa cTeHKH Tpy6bt no 0~pym~ocTn. PacnpeneneHHe TeMnepaTypu, a Taxxe .noKanbHbre a 
yCpenHeHHble HO OKp)‘XHOCT&i 3Ha’leHNS YiSCJla HyCcenbTa PaCC~HT~Ba~TCa upH pa3nHHHbiX 3HaSeHHRX 
YaCTOfbI H OTHOmeHHX aMflnHTyn, HHCna PeiiHOnbnCa, OTHOmeHHR XpHBH3HbI. a TaKxe YHCen AHHa 
A UpaHATn% UOny’IeHHbIe pe3ynbTaTbI CBHneTenbCTBymT 0 CymeCTBeHHOM H3MeHeHHH nOKanbHbIX N 
y’+nHeHHbIX II0 OKpyXoiOCTH 3Ha’ieHHii ‘IHCna HyccenbTa. YCpenHeHHbIe u0 npOCTpaHCTBy H BpeMeHH 
3HaHeHHR YHCna HyccenbTa IlpH ‘IaCTOTHOM uapaMeTp‘2 Z = 6 6nH3KH COOTBeTCTBymJ.ttHM 3Ha’teHHRM 
JIJla paBHOMepHOr0 IlOTOKa II y6bmamr C yMeHbmeHHeM a. )IanbHefimee yMeHbmeHHe YWCna HyCCenbTa 

upH HH3KHX YaCTOTaX CBfl3aHO C pOCTOM OTHOmeHHIi aMunHTy& 


