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Abstract—Effects of pulsatile flow upon heat transfer characteristics are studied for fully developed, laminar,
and pulsating flow in curved tubes. The heat transfer boundary conditions are taken to be axially uniform
heat flux with peripherally uniform wall temperature. Temperature distribution, and local and peripherally
averaged Nusselt numbers are calculated for different values of frequency and amplitude ratio parameters,
Reynolds number, curvature ratio, Dean and Prandt! numbers. The result shows that there is considerable
variation in local and peripherally averaged Nusselt number. The time and space averaged Nusselt number

approaches the corresponding steady state flow case at frequency parameter o

6 and decreases as «

decreases. A further decrease is associated with increasing amplitude ratio at low frequencies.

NOMENCLATURE

a, tube radius;

De, Dean number = Re/\/R,

k, (RAT), ratio of the maximum amplitude of the
oscillating pressure gradient to the
steady component ;

K, fluid thermal conductivity;

n, dimensionless temperature ;

Nu, local Nusselt number defined in terms of
the time averaged mean temperature;

Nu, peripherally averaged Nusselt number ;

Nu, time and space averaged Nusselt
number ;

P, dimensionless pressure, = P'a?/pv?;

Pr, Prandtl number;

Re, Reynolds number based on tube radius
and the average axial velocity resulting
from the steady pressure gradient P, ;

R, dimensionless tube radius of curvature,
= Ry/a;

R, dimensionless toroidal radius, = R’/a;

r, dimensionless radial coordinate in tube,
= r'/a;

T, temperature, fraction of a cycle;

t, time, = wt';

W, dimensionless axial velocity component,
= aW'/v.

Greek symbols

o, frequency parameter, a\/w/v;

w, frequency of pulsation;

0, angular coordinate in plane of tube
curvature;

I, dynamic viscosity;

v, kinematic viscosity ;

¢, dimensionless axial vorticity
component ;

P, density;
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o, angular coordinate of tube cross-
section ;

v, dimensionless secondary stream
function;

Ay, change in i between adjacent secondary
stream lines;

An, change in n between adjacent
isotherms;

’, denotes dimensional variable.

Subscripts

1, local;

w, at the wall;

st, steady component.

INTRODUCTION

ALTHOUGH pulsating flow in curved tubes occurs
frequently in both natural phenomena and engineering
systems, very little related work is available in the
literature, and consequently the problem is not com-
pletely understood.

It was only quite recently that Lyne [1] initiated the
analysis of unsteady pulsatile flows in curved tubes.
The motion induced in a circular tube by a sinusoidally
time-varying pressure gradient with zero mean is
assessed. He predicts additional secondary circulation
of opposite direction to that of steady flow in the
inviscid core and postulates that this additional secon-
dary flow is due to shear action.

Zalosh and Nelson [2] use the Finite Hankel
Transform to obtain analytical solutions for a medium
range of the frequency parameter 2.

Chow and Li [3] employ the same technique used by
Zalosh and Nelson, but their solution covers a wider
range of «. They find that the secondary flow patterns
vary with respect to « and can be divided into three
distinct phases dictated by the relative importance of
the viscous and inertia forces: (1) the shear force
dominated flow with a single circulation, (2) the
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transitional flow with either one or two circulations,
and (3) the boundary layer flow with either one or two
circulations, and (3) the boundary layer flow with two
circulations. They confirm Lyne’s [1] prediction of the
formation of an additional circulation in the inviscid
core but they report that it is more likely to be due to
inertia forces, rather than shear action as postulated by
Lyne.

Simon et al. [4] use a perturbation analysis includ-
ing the second-order solution for fluid and heat
transfer. The results obtained cover a wide range of
excitation parameters (@ = 0.1-12, k = 0.01-3) and
Prandtl number (Pr = 1.0-100), but small Dean
number (De < 22). Their results show that the increase
in the time averaged Nusselt number are most evident
at high Prandtl numbers, high excitation relative
amplitudes, and low excitation frequencies. They re-
port that the Nusselt number ratio (curved pulsatile to
straight pulsatile) passes through a maximum value at
low . This unusual result is negated by the more exact
numerical solution results described in the body of the
current paper. It can be inferred that the pertubation
analysis, limited as it is to solutions of the second-
order, is unable to describe fully the details of the
secondary flow phenomena in pulsatile flow especially
at low excitation frequency.

Conflicting results have been reported for the pul-
sating flow and heat transfer in straight tubes. In some
cases the flow pulsations seem to enhance the heat
transfer, whereas, in other cases either no significant
effect is shown or a decrease occurs.

The solutions for pure oscillatory and pulsatile flows
available in the literature are mostly analytical and
restricted to very low Dean numbers (< 22).

The purpose of the present study is to magnify the
secondary flow effect, by extending the Dean number
range, and to show the outcome of the interaction
between the flow pulsations and the secondary flow.
The effect of this interaction on the heat transfer is
discussed. The energy equation is solved using the
velocity distribution results reported in an earlier
paper by Rabadi et al. [ 5] and in full in a Ph.D. thesis
[6]- The numerical techniques used are the same as
those employed by Rabadi et al. [5].

FORMULATION OF THE PROBLEM

Consider a circular tube of radius a coiled in a circle
of radius R, about the axis OZ as shown in Fig. 1. The
curved tube could be thought of as a part of a helical
tube with zero pitch. The system of coordinates shown
in Fig. 1 is a toroidal coordinate system. Any point

F1G. 1. System of toroidal coordinates for a circular tube.
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inside the tube can be completely located by specifying
the three orthogonal toroidal coordinates 8, ¢ and r.

The present analysis concerns pulsatile laminar flow
and heat transfer in curved tubes. The following
assumptions are made:

(1) the fluid behaves like an incompressible, viscous

Newtonian fluid with constant properties;

(2) both the laminar flow and the temperature fields

are fully developed;

(3) the effects of free convection and viscous dissi-

pation are negligible;

(4) axial conduction is negligible relative to radial

conduction;

(5) the coil pitch effect is negligible.

The effects of free convection have been studied by
Singh and Bell [7] and Abul-Hamayel [8] experimen-
tally, and Yao and Berger [9] analytically using
perturbation methods. These studies show that the
effects of free convection can be of significance at low
Reynolds number. Thus, the present study is limited to
small Grashof numbers when the Reynolds number is
small,

The dimensionless equations (1-3) governing the
flow are [Kalb [1973)]:

axial velocity, W, equation:

aw W oW W
o H AW B+ Com

ot o or?
1 *wW 1 opP
- e = R 30 (1 + kcost),
axial vorticity, £, equation:
ac ot 5 e 1 0%
AE+B ot C s =
ot At o rmagr P
where ¢ is defined as
1 sin ¢\ ¥ N 1% cospdy 1 62w
rR™ R® )or R or* rR® 0 r*Rog?

The coefficients, 4, A, B and C are functions of the
space variables r, R and ¢, and first-order stream
function derivatives. Dy, is a function of the space
variables as well as the axial velocity W and its
derivatives.

L (iems e
ST

C=- <§+s”;¢+$%),
A=Rl~2(1+co 4)—‘/’—5"14’2—:

« is referred to as ‘the frequency parameter.” Other
researchers refer to « as the oscillatory Reynolds
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number. In fact, «? is the ratio of the characteristic
diffusion time, a?/v to the characteristic oscillatory
time, 1/w.

The axial pressure gradient, which is the only
pressure term that explicitly appears in the final
equations is expressed as follows:

6_P = (?—}1> (1 +kcost)
st

00 00

This assumes that the driving force is a sinusoidally
time varying axial pressure gradient imposed on a
steady component (JP/0f), The ratio of the
maximum amplitude of time varying component to the
steady component is k.

The heat transfer boundary condition chosen in this
work assumes that the wall temperature T, varies
linearly in the axial direction but is uniform per-
ipherally and constant with time.

A non-dimensional temperature n is defined in the
following form:

L _(T.-T)
" a(dT/o8) °
where 0T/d6 is constant for a thermally fully de-

veloped flow.
The dimensionless energy equation is [10]:

on on
—Praza+BT%+AT
X6n+62n 1°n  WR,
or or* " r’o¢* R
where
1 sin¢g Proy
Ap=- —
TV TR rRo¢
_cos¢ Proy
™™ 'R rR or

and Pr is the Prandtl number, uCp/K.

Boundary conditions

Figure 2 illustrates the boundary conditions. Four
regions are identified separately: (1) tube wall where
W=y =n =0 & = — R YHW/0rY, (2) left
horizontal radius where y = & = 0, 0W/d¢ = dn/o¢
= 0, (3) right horizontal radius where = & = 0,
OY/0¢ = dnfd¢ = 0, and (4) center point where y = &
= 0, 0W/or = dnjor = 0.

RESULTS AND DISCUSSION

As defined before, the dimensionless temperature
represents the difference between the tube wall and the
fluid temperature. The temperature profiles are shown
for the upper half of the tube cross-section, in the form
of contours. A fixed number of contours (10) is
adopted in all the plots. This means that different
values of An (the difference in dimensionless tempera-
ture between neighboring contour lines) are adopted
for each plot. Therefore, the large spacing between the

g_% =0 %’r‘_ =0 ?“_ =0
w , W 0 W o
3¢ 0 ar a9

v =0 v =0 v =0
£ =0 £ =0 § =0

FiG. 2. Boundary conditions.

contours represent areas of relatively flat temperature
gradients, whereas places where the contour lines are
close together represent steep temperature gradients.
These temperature contour plots are very useful for
visualizing the effects that various parameters have on
the temperature field. Note that for either heating or
cooling, the dimensionless temperature is zero at the
wall. Extrema on these contour plots correspond to the
highest and lowest fluid temperatures, The @ and ©
signs are for positive and negative dimensionless
temperatures, respectively.

Each of these temperature contour plots represents
the profiles at four different times during a cycle (T =
0.25, 0.5, 0.75 and 1.0). These times are the same at
which the axial velocity profiles, and the secondary
flow stream lines are given.

Figure 3 shows the variations of axial velocity at
four times during a cycle for « = 2,4 and 10, and k =
1.5. The maximum velocity is moved towards the
outside of the pipe, asin steady flow. The steep velocity
gradient created in this region is instrumental in
increasing the heat transfer as will be seen later. The
higher the frequency the less the flow responds to the
pulsating pressure. At low frequency (« = 2.0) the
response is a maximum, and a flow reversal actually
occurs at T = 0.25.

The secondary flows induced at corresponding
times in the cycle are shown in Fig, 4. Further details of
the flow are available in an earlier publication by
Rabadi et al. [5]. The intensity of the secondary flow is
revealed by the value of Ay (the change in the
streamfunction between adjacent streamlines). The
flow moves rapidly along the periphery from outside to
inside, with a slower return along the pipe diameter
which is an axis of symmetry for the upper and lower
circulations. For the case illustrated in Fig. 4. the
circulation is most intense at 7 = 0.75 and reduces by
an order of magnitude during the cycle. At its strongest
the return flow resembles a jet flowing from the outside
(¢ = =m/2) around the periphery.

The secondary flows have a profound and interest-
ing effect on the temperature distributions. It is clear in
Figs. 5 and 6 that for a high Prandtl number (Pr = 5),
convection effects are dominant. The high tempera-
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tures near the wall at the outside of the duct are carried
across the pipe center line by the secondary flows. This
creates two minimum temperature regions, one in each
half of the pipe. The effect is greatly reduced for o = 2,
when T = 0.25 and 0.5 (Fig. 6), as during this portion
of the cycle the secondary flow has been greatly
reduced (Figs. 3 and 4). In reading these figures the
value of An should be observed as it represents the
temperature change between adjacent isotherms. At o
= 10.0 {Fig. 5), An changes httle during a cycle.
However at « = 2.0 (Fig. 6), it changes considerably,
reflecting the relative intensity of the secondary flow at
different times during the cycle.
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o = 2,4and 10,k = 1.5, Re = 1000, De = 100 and fractions of
acycle T = 0(1.0), 0.25, 0.5 and 0.75.

For very small Prandtl numbers (not shown) con-
duction dominates and the isotherms tend towards
concentric circles about the pipe center, greatly reduc-
ing the effects of curvature.

Figure 7 illustrates an intermediate Prandt! number
(Pr = 0.7). In this case convection is sufficient to move
the minimum towards the outside of the pipe, when the
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F1G. 4. Secondary flow streamlinesfor o = 2.0,k = 1.5,Re =
1000, De = 100 and fractions of a cycle T = 0(1.0),0.25,0.5
and 0.75.
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secondary flow is not intense, but not sufficient to form
the bi-modal distribution discussed above. Again,
when T = 025 and 0.5 the patterns change con-
siderably because of the reduction of axial velocity and
the associated secondary flows. At T = 0.25 a small
temperature maximum occurs towards the inside of
the pipe because of the flow reversal in the axial
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direction. The steep temperature gradients, evident at
the outside of the duct and the adjacent peripheral
region in Figs. 5-7, give rise to enhanced Nusselt
pumbers in these regions. These increased values are
partly offset by the decreased Nusselt numbers as-
sociated with the reduced gradients seen at the inside
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of the duct. Reduced gradients are particularly evident
fora = 2at T = 0.25 and 0.5 (Figs. 3 and 7) as the
pulsations reduce the intensity of the secondary flow.
Ultimately, as shown below, this leads to a reduction in
the time and space averaged values of the Nusselt
number as compared with higher values of «.
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N. J. RaBaDy, J. C. F. CHow and H. A. SimoN

Figures 8-10 illustrate the local distribution of
Nusselt number, Nu,, around the periphery as well as

the peripherally averaged Nusselt number, Nu, as a
function of time. An angle of 90° refers to the outside of
the pipe and —90° to the inside. For« = 10and Pr =
5, not only is the heat transfer convection dominated,
but secondary flows vary little during the cycle. Nu, is
highest at the outside of the pipe due to strong
secondary flows revealing a boundary layer type of
build-up, originating at that point. For « = 2, Figs. 9
and 10, Nu, varies widely during a cycle at the outside
wall because of the diminution of the secondary flow
for T = 0.25 and 0.5. Figures §—10 also show a change
in the phasing of Nu in time. At low frequency, viscous
forces predominate and the forcing function and the
velocity response are in phase. At higher frequencies
inertial forces predominate and the forcing function
and velocity become 90° out of phase. This phased
reaction is duplicated by Nu which responds with the
velocity. Slight irregularities in the smoothness of the
curves (see Figs. 9 and 10for example) were checked by
repeating the numerical analysis for smaller grid sizes
and time steps. The irregularities were found to be
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F16. 8. Local Nusselt number Ny, as a function of angle ¢ (¢
= 90° at outside of horizontal diameter) and for T = 0 (1.0),

0.25, 0.5, 0.75 and peripherally averaged Nusselt number Nu
as a function of cycle fraction, for « = 10.00,k = 1.5, Pr = 5.0,
Re = 1000 and De = 100.



Heat transfer in curved tubes 201

stable and hence were not the outcome of numerical
procedures.

The Prandtl number always plays an important role
when boundary layer phenomena are involved, and
this i1s most evident in Figs. 11-13, which show the
behavior of the time and peripherally averaged Nusselt
number Nu. At the Dean number shown (De = 100),
Pr = 0.5 and 0.005 give almost identical results. This
implies that the heat transfer is conduction dominated
with respect to the secondary flows. As o reduces, Nu
reduces because of variations in axial velocity. This
reduction is clearly more pronounced as k increases
from 0.5 to 1.0 to 1.5. Convection, resulting from the

secondary flows, leads to a pronounced increase in Nu
as the Prandt] number increases.

The Nusselt number results for the frozen con-
ditions (high «), can be compared to the steady state
solution available in the literature. Table 1 lists the
value of the time averaged peripherally averaged
Nusselt number at high frequency for the present work
compared with the steady state results of Kalb [10].
Excellent agreement is shown for low Prandtl number.
For Pr = § the effect of secondary flow becomes more
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F1G. 9. Local Nusselt number Nu, as a function of angle ¢ (¢
= 90° at outside of horizontal diameter)for T= 0 ( 1.0),0.25,
0.5, 1.0 and peripherally averaged Nusselt number Nu as a

function of cycle fraction for « = 2.0,k = 1.5, Pr = 5.0, Re =
1000 and De = 100.

important, hence higher a is needed to assure ther-
mally frozen conditions.

The results presented here do not show the same
behavior as that predicted in an earlier paper by Simon
et al. [4], for small values of a. It must be concluded
that the perturbation analysis used there up to the
second order, is simply not able to model accurately
the complex secondary flows that occur at low a.

CONCLUSIONS

In laminar, pulsatile, curved tube flows, the Nusselt
number varies widely both around the tube periphery
and also during a cycle. These effects are greatest for
large Prandtl numbers and small values of the fre-
quency parameter . The time and space averaged
Nusselt number is large for large Prandt] numbers and
falls at low values of a. This latter effect becomes more
pronounced as the excitation amplitude increases.
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Heat transfer in curved tubes

TRANSFERT THERMIQUE DANS DES TUBES COURBES AVEC UN ECOULEMENT PULSE

Résumé—On étudie les effets d’'un écoulement pulsé sur le transfert thermique pour un écoulement
pleinement développé, laminaire dans des tubes courbes. Les conditions aux limites thermiques sont un flux
pariétal constant axialement avec une température pariétale uniforme sur la périphérie. La distribution de
température et les nombres de Nusselt locaux ou moyens sur la périphérie sont calculés pour différentes
valeurs de la fréquence, du taux de pulsation, du nombre de Reynolds, du rapport de courbure, des nombres
de Dean et de Prandtl. Les résultats montrent qu'il y a une variation considérable des nombres de Nusselt
locaux ou moyens sur la périphérie. Le nombre de Nusselt moyenné dans le temps et 'espace approche le cas
correspondant permanent lorsque le paramétre de fréquence est a = 6 et il décroit lorsque « diminue. Une
diminution est associée a 'augmentation du taux de pulsation aux basses fréquences.

WARMETRANSPORT IN GEKRUMMTEN ROHREN BEI PULSIERENDER STROMUNG

Zusammenfassung—Es werden Einfliisse der pulsierenden Stromung auf die Warmetransport-Eigenschaf-
ten bei voll ausgebildeter laminarer pulsierender Strémung in gekriimmten Rohren untersucht. Als
Randbedingung wird ein gleichmifiger Wirmestrom in der axialen Richtung mit konstanter Wandtempera-
tur iiber den Umfang angenommen. Temperaturverteilung und sowohl lokale als auch {iber den Umfang
gemittelte Nusselt-Zahlen werden fiir verschiedene Frequenz- und Amplituden-Verhiltnisse, Reynolds-
Zahlen, Kriimmungsradien-Verhéltnisse, Dean- und Prandtl-Zahlen ermitteit. Das Ergebnis zeigt einen
betrichtlichen Unterschied zwischen der lokalen und der tiber den Umfang gemittelten Nusselt-Zahl. Die
zeitlich und rdumlich gemittelte Nusselt-Zahl nihert sich derjenigen der entsprechenden stationsiren
Stromung bei einem Frequenzparameter von a = 6 und filit mit abnehmendem «. Eine weitere Abnahme ist
mit einem steigenden Amplitudenverhiltnis bei niedrigen Frequenzen verbunden.

TENJIONEPEHOC B UCKPUBJIEHHBIX TPYBAX NPH MYJALCHPYIOMIEM TEYEHHU

AHHOTAUMS — BiusHHe NyNbcauMii Ha XapaKTEPHCTHKH TEMIOOOMEHA HCCIEAYeTCs NPH NOJHOCTBIO
Pa3BHUTOM JIAMHHAPDHOM M [Y/ILCHPYIOUIEM TEYCHHH XHAKOCTH B MCKDHB/IeHHBIX TPyGax. B kauectse
rPAHHYHBIX YCAOBHH TeNI00OMeHa IPHHATHI AKCHAJILHO PABHOMEDPHBI! TEIUIOBOH NOTOK W OJHOPOIHAS
TemnepaTypa cTeHKH TPYGhl 110 OXpyXHOCTH. PacnpeieneHHe TeMuepaTypol, a TaK¥e JIOKaJbHBIE H
YCPEHEHHbIE 110 OKPYXXHOCTH 3Ha4enus yucia HyccensTa pacCHHTHIBAIOTCS NPH PA3HYHBIX 3HAYCHHAX
4acTOThl H OTHOUICHHS amnnuryl, wucaa Pefinonbaca, OTHOIEHHS KPHBH3HBL, a Takxe uMcen Jluna
u TMpangTas. [TojyueHHbIe Pe3y/IbTaThi CBHACTENBCTBYIOT O CYLUECTBEHHOM H3MEHEHHH /IOKATbHBIX H
YCPEIHEHHbIX O OKPYXKHOCTH 3HaueHuiH uucna HyccenpTa. YCpeOHEHHBIE IO NPOCTPAHCTBY H BPEMEHH
3HaueHHuA 4Mcria Hyccenabra npu 4acTOTHOM napameTpe % = 6 GNM3KH COOTBETCTBYIOUIMM 3HAYECHHAM
IS PABHOMEPHOTO MOTOKA M YOLIBAIOT ¢ yMeHbIUCHHEM &. [lanbHefee yMerblienne yncna HyccensTa
[PM HE3KMX YaCTOTAX CBA3AHO C POCTOM OTHOLICHHN aMILTHTYA.
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